Nonlinear generalized Dunkl-wave equations and applications
نویسندگان
چکیده
منابع مشابه
Grassmannians, Nonlinear Wave Equations and Generalized Schur Functions
The solution space of the KP hierarchy of nonlinear evolution equations is known to have the geometric structure of an infinite dimensional Grassmannian manifold. This paper demonstrates this fact in an elementary way. Specifically, it is explained how one may use the recently introduced N-Schur functions to “translate” the nonlinear differential equations into the algebraic Plücker relations f...
متن کاملGeneralized Dunkl-sobolev Spaces of Exponential Type and Applications
We study the Sobolev spaces of exponential type associated with the Dunkl-Bessel Laplace operator. Some properties including completeness and the imbedding theorem are proved. We next introduce a class of symbols of exponential type and the associated pseudodifferential-difference operators, which naturally act on the generalized Dunkl-Sobolev spaces of exponential type. Finally, using the theo...
متن کاملClassification of Solitary Wave Bifurcations in Generalized Nonlinear Schrdinger Equations
Bifurcations of solitary waves are classified for the generalized nonlinear Schrödinger equations with arbitrary nonlinearities and external potentials in arbitrary spatial dimensions. Analytical conditions are derived for three major types of solitary wave bifurcations, namely, saddle-node, pitchfork, and transcritical bifurcations. Shapes of power diagrams near these bifurcations are also obt...
متن کاملAnalysis of nonlinear wave equations and applications in engineering
Nonlinear dispersive wave equations arise naturally in scientific and engineering fields such as fluid dynamics, electromagnetic theory, quantum mechanics, optical communication, nonlinear optics etc. Many important questions (both in theory and applications) are related to the interaction of two effects: energy spreading (dispersion, diffraction) and energy concentrating (nonlinear self-trappi...
متن کاملNonlinear Wave Equations
where := −∂2 t +∆ and u[0] := (u, ut)|t=0. The equation is semi-linear if F is a function only of u, (i.e. F = F (u)), and quasi-linear if F is also a function of the derivatives of u (i.e. F = F (u,Du), where D := (∂t,∇)). The goal is to use energy methods to prove local well-posedness for quasilinear equations with data (f, g) ∈ Hs × Hs−1 for large enough s, and then to derive Strichartz esti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.08.058